
Java Security Extensions for a Java Server in a
Hostile Environment

David M. Wheeler1
Adam Conyers, Jane Luo, Alex Xiong

5000 West Chandler Blvd, M/S CH6-449
Chandler, Arizona, 85226

ABSTRACT
The Java (TM) Virtual Machine is being used more frequently as the basic engine behind

dynamic web services. With the proliferation of network attacks on these network resources,
much work has been done to provide security for the network environment. Continuing work
on firewalls, intrusion detection, and even access control have provided numerous insights and
capabilities for protecting web resources. Java itself has received much attention in the
security arena, and the Java 2(TM) Architecture has provided considerable in-roads to
providing security services. However, this research has operated under the assumption that
attacks only occur through the network, and not with direct access to the web server through
a valid login. Little effort has been placed on securing a Java web server where the attacker
has a valid login to the host machine. This paper describes specific security extensions
developed for a Java Virtual Machine that provide assurance of correct system operation and
integrity even in the presence of successful attacks on the underlying operating system.

1 Introduction
Java 2 security enhancements provide numerous security services, including security

policy definition and enforcement, code authenticity protections, and authorization controls.
These services are implemented in a way that makes them reliant upon the proper use and
functioning of the access control mechanisms of the underlying operating system. If the
operating system is attacked from an insider or an attacker who has compromised an account
on the server, many of these Java security mechanisms can be easily overcome. Despite proper
configuration, the use of firewalls and other network security mechanisms, web servers are
compromised every day. Additional mechanisms can be added to Java to add resilience to the
server even in the presence of an attack, removing Java’s sole dependence on the access
controls of the underlying operating system.

This paper explores some of the unique vulnerabilities in the runtime environment of the
Java 2 JVM, and describes the details of custom extensions to the standard Java security
architecture that can be utilized to provide increased assurance of correct system operation
and integrity of a Java application server, even if assumptions of a safe server environment
cannot be made.

This paper begins with an explanation of the motivation for this project. Section 3
introduces the vulnerabilities in Java’s security mechanisms. Section 4 provides an informal set
of security objectives used to describe the underlying security requirements for the Java 2
security extensions. These objectives are used to guide section 5 in describing the important
aspects of the extensions. The paper concludes with a summary and areas for future work. A
brief review of the security mechanisms available in the Java 2 environment is provided as an
appendix for the reader who is not familiar with these concepts.

1 The author may be reached by email at david.m.az.wheeler@intel.com

1 of 13

2 Motivation
Java security was designed to provide common functionality needed in both client and

server environments [1 p19]. For this reason, certain trade-offs were made in order to increase
the applicability of Java to these differing environments and to meet ease-of-use requirements
intended to ensure Java attains a pervasive stance among developers and users alike. The
broad assumptions about ease-of-use and system configuration required to satisfy a general-
purpose computing environment, do not translate well to a custom-built application server and
result in system vulnerabilities adverse to a secure server.

Many of Java’s strongest benefits also introduce some of Java’s most serious security
vulnerabilities. For example, Java’s portable byte code, which is the basis for its “write-once,
run-anywhere” slogan, is a primary basis for the ease with which Java can be reverse-
engineered. And just as easily as intellectual property can be extracted from an application’s
class files, malicious classes can be inserted into a Java application. Attacks on unsigned JAR
files and CLASSPATH modifications are well known, but a knowledgeable attacker can do far
more damage, even overcoming many of Java’s security mechanisms.

Although it appears Java has provided several sophisticated security mechanisms to
protect itself from these types of attacks, each mechanism is laced with designed-in
backwards-compatibility weaknesses or implementation subtleties that can be manipulated to
overcome those protections. Signed JAR files are susceptible to keystore replacement attacks,
the JVM itself can be modified by adding or replacing trusted classes in the system JAR file (i.e.
rt.jar), and even the security checks in the JVM can be disabled by merely setting a null
security manager. The Java environment relies on the proper application of the access control
mechanisms in the underlying operating system to thwart these attacks. While this is prudent
and recommended, there are no secondary mechanisms to protect the system if this
configuration is done improperly or fails due to some other system vulnerability. But even with
an untampered installation, the security policy is applied at such a coarse granularity level that
deployment of real applications with an effective, strong security policy becomes too difficult
in practice.

The motivation for this work is derived from the need to protect the intellectual
property in an application server while building a system that enforces a known security policy,
applies the least-privilege principle, provides resistance to malicious code, and resists
tampering from malicious and benign users and administrators. The mechanisms in this paper
are intended to satisfy these objectives even when assumptions about a safe environment
cannot be made.

3 Java Security Vulnerabilities
This section introduces the set of vulnerabilities uncovered by the project team and

addressed by the security extensions discussed in this paper. The vulnerabilities covered here,
are best classified as ones of choice and design2 rather than of flaw or defect. And while the
descriptions of the mechanisms underlying these vulnerabilities do appear in the literature,
discussions regarding their weaknesses and their impact to security are absent.

Many critical components of the Java environment are only protected by the underlying
operating system’s access control mechanisms. In some installations, the JRE files have no
access control restrictions placed on them. This includes the configuration files used to define
the security policy and critical security classes (java.security and java.policy), the extension
directories that default to give all permissions to classes and JARs (jre/lib/ext and

2 It should be noted, that in most cases, the mechanisms described here were designed

to be extensible, so that better protections could be provided for specific situations. Many of
these discussions of planned extensions can be found in [1] and [2].

2 of 13

jre/classes3), and the JVM system classes JAR (rt.jar). Even the IBM JRE, which otherwise
provides a fairly secure default installation, allows the creation of the jre/classes directory and
assigns all permissions to any classes placed there.

This loose access control protection extends to many components, and most system
administrators are not aware of the potential dangers posed by this situation. For example, the
keystore used to hold the certificates for checking signed JAR files are typically provided by an
application, or updated during installation. Most system administrators may not realize that if
the keystore is modified, signed JAR files can be spoofed, and permissions can be granted to
malicious code.

The loose access control on the jre/classes directory opens the possibility of all types of
malicious code insertion attacks. Some possibilities include insertion of a malicious class
loader, replacement of the policy manager, insertion of a weak security manager, or
substitution of some application class. Since the jre/classes directory becomes part of the
Xbootclasspath [3], it is one of the first places checked by class loaders when looking for
classes. This is due to the way in which class loaders search for classes. The standard algorithm
for loading classes, which is followed by the URLClassLoader and recommended in the
literature [1][2][9], uses a delegation hierarchy in order to ensure system classes are loaded
only by the system class loader, and JVM (boot) classes are only loaded by the bootstrap (null)
class loader. Using the delegation hierarchy, a class loader will load a class only if its
delegation parent has not loaded the class [8]. Effectively, the URLClassLoader will delegate
class loading to the bootstrap class loader before attempting to load the class itself. Since the
jre/classes directory is hard-coded in the Xbootclasspath by the JVM, any class existing in that
directory, that conflicts with the package and class name of an application class, will be loaded
from that directory instead of from the application directory or JAR.

As an example, an attack class placed in the jre/classes directory could operate
according to the proxy pattern [12] for the class that it is replacing, but also perform other
malicious acts. For example, the class could set a new policy manager that grants permissions
to other malicious classes; the class could override the main class of an application and use a
malicious class loader to become the application’s defining class loader, and then overcome
signed JAR protections; the class could strategically insert itself between two classes and
simply record data that is passed between them. Once a malicious class is inserted into the
system and given system privileges, the attacks are endless.

The primary reason that these attacks are actually viable in the Java system is because
reverse-engineering of Java class files is so easy. This is primarily due to Java’s portability. The
class file format includes human-readable strings revealing the names of class methods and
variables [7]. The standard JDK distribution includes a tool4 to disassemble the byte code of
public and private methods and list the variables of any class file. In addition, the marketplace
is full other tools to completely decompile any class file into its original source code. Only with
the most sophisticated obfuscation tools can one protect a Java class file from reverse-
engineering to the equivalent degree of difficulty as compiled C++ code, and even then this
results in a modest penalty in runtime performance.

Even assuming an application is protected with radical obfuscation on its class files, Java
classes are still easier to analyze than a corresponding C++ application. Java class files
encompass only a single class object, are generally well named for human recognition, and are
organized logically by function into packages. This makes finding and identifying interesting
functionality very easy. However, even if the effort to fully reverse-engineer a Java class is not
expended by an attacker, the key components of an application can be easily extracted as class
files and reused in other applications. For that matter, the entire application itself can be

3 The jre/classes directory is not technically part of the implementation of extensions,
and it is not created by a default installation. Once created, however, the jre/classes directory
defaults to the same permissions as the boot class path: all permissions [3 p87].

4 See Sun’s JDK documentation for the javap command

3 of 13

easily copied and used without a valid license. The techniques used to make a monolithic C++
application unusable without a license do not carryover as simply to the Java environment. The
ease with which intellectual property can be lost through reverse-engineering and illegal
copying of Java classes is a practical consequence of the conveniences of the Java class file
format.

Another deficiency is in the application of the security policy. While the Java literature
discusses the fine-grained access control capabilities of Java [1][2][3], in practice this applies
only to the specification of permissions, not to the application of those permissions. The
mechanism that Java uses to define permissions is fine-grained: any permission that can be
conceived can be created as an extension to the permission hierarchy. However, the
application of the permissions in the Java 2 security architecture is limited to a directory or a
JAR file [3 p244]. This is insufficient, except for the most rudimentary systems. However, it
reduces system complexity and eases security policy design at the expense of better access
control. Since a single JAR file or a set of classes in a directory defines most applications, all
classes in the application typically receive all the permissions granted to that JAR file or
directory. This violates the principle of granting least-privilege. Furthermore, this type of
single grant is (erroneously) assumed to be proper; the idea for this being propagated by the
default policy that grants all permissions to every class or JAR file deposited in the jre/lib/ext
directory. Some commercial systems are installed with a security policy that is even worse5.

A further vulnerability concerning the security policy has to do with the way it is applied.
The “java” command allows the security policy to be overridden using the
“java.security.policy” option [4]. Using this parameter on the command-line allows any
additions the user desires to be added to the security policy. Additionally, if a double equal
(i.e. ==) is used with this command-line parameter, the system specified security policy is
completely replaced by the file specified [3 p239]. Although this functionality can be turned off
using a property in the java.security file, the default JRE installation enables this insecure
behavior. Obviously, this is convenient for developers, but it provides an enormous loophole in
the enforcement of a system security policy for Java.

The final vulnerabilities discussed in this paper have to do with JAR files. Although
“sealing” of JAR files is recommended [5], there is no mechanism in place to ensure that the
“sealing” is not tampered. It is far too easy to modify a JAR file and remove the “sealed”
attributes of entries, and there is no runtime mechanism to check that elements that were
supposed to be sealed are in fact sealed. Signed JAR files can suffer from this same problem.
When signed JAR files are used as a single mechanism, there is nothing preventing an attacker
from removing the signature file in the JAR and modifying the classes in the JAR file. The class
loader will still load and execute the classes. Only when used in conjunction with a policy that
assigns specific permissions to the classes from a signed JAR file, can the signature be useful.
The trust inherited from the signed JAR file goes unused unless the policy specifically
references the certificates that should be associated with classes from the JAR. However, if
the class loader cannot be trusted (e.g., the class loader associates a particular certificate to
all CodeBases regardless of the location from where they were loaded), the use of the policy
accomplishes nothing.

From this discussion, it is evident that there are serious vulnerabilities in Java’s security.
These vulnerabilities can be easily leveraged by a knowledgeable attacker with a valid account
on the system. Even some of Java’s strongest security mechanisms (e.g., signed JAR files and
policy enforcement) can be circumvented without such an attack becoming evident to the
system or the user.

5 See the policy implemented by Jrun 3.0 in the jrun.policy and ejipt.policy files, which

provide grants that gives all permissions to every class, regardless of its CodeBase.

4 of 13

4 Security Requirements
This section introduces a set of assumptions, a set of threats, and a set of security

objectives that influence the design of security extensions for the application server. The
assumptions are based upon the nature of a Java application server, and the threats are based
upon the security vulnerabilities discussed in the previous section. The objectives are an
informal statement of the security requirements guiding the design of the security extensions.

4.1 Assumptions
The environment for a typical web server is the basis for the assumptions used to

develop the security extensions in this paper. The assumptions are formulated from the
perspective of an independent software vendor (ISV) providing a Java application server as a
product offering. These assumptions, however, have basic relevance beyond that particular
viewpoint.

The application server is a typical networked server, which is accessible from a public
network. The operating system provides common authentication (e.g., username-password
authentication) and access control (e.g., read-write-execute access lists) protections, and the
server is housed in a facility with physical protections (e.g., locked doors). While the network
and server host are considered to have standard protections (e.g., firewalls, updated patches,
etc.), we specifically assume that these will not prevent an outside attacker (i.e., hacker) from
accessing the host server. Additionally, we focus internally on the server, and specifically
ignore external communications (e.g., encrypted sockets) between the server and other
entities (e.g., users, databases, etc.).

The Java application server is characterized by a static set of Java classes and a stable
configuration. In addition, the configuration from one server to the next is fairly similar, and
once it is set, it is not normally modified. This assumption is important, as some of the security
extensions discussed here involve the use of digital signatures that complicate the frequent
modification of some system components.

4.2 Threats
The threats to the system are addressed from the perspective of vulnerabilities in the

Java security system due to configuration, backwards-compatibility, and implementation
issues. Each threat is linked to one or more types of attackers that could potentially leverage
the vulnerability. The types of attackers considered here include external hackers, system
administrators, normal users, and system developers. The threats to the system include
intellectual property loss, data disclosure and data corruption, tampering, and unaccountable
actions.

A primary threat to an ISV is the loss of intellectual property. This loss results in actual
or potential loss of income due to lost sales and/or loss of competitive advantage. Loss of
intellectual property can be broken down into two subthreats: the threat of reverse-
engineering and the threat of illegal copying. System administrators may have some financial
incentive to generate illegal copies of software by installing copies on more servers than the
number of purchased licenses. Reverse-engineering may be performed by any of the
prospective threat agents, either in response to curiosity, a desire to overcome licensing
restrictions or security controls, or for financial incentive from the ISV’s competitor (e.g., the
competitor may have purchased the software, thereby becoming the system administrator).

A primary threat to the ISV’s customer is data disclosure and corruption. From an
internal application perspective, these threats come from Trojan horse code, mal-ware, and
software defects. These threats include any piece of additional software inserted into the
system, or any valid component of the system modified in such a way as to passively collect
and disclose, or destroy, private system data. For purposes of this paper, mal-ware is defined
as this type of malicious code deliberately injected into the system by one of the system’s

5 of 13

developers; Trojan horse code is deliberately injected into the system by someone other than a
system developer. Defects are similar to mal-ware, however they are inserted accidentally by a
developer. This paper does not specifically address the threat of defects other than to separate
them from mal-ware.

A common threat to both the ISV and the customer is tampering, especially tampering
with the security mechanisms. For purposes of this paper, tampering is defined as the removal
of a class or the modification of configuration data. This is specifically to differentiate this
type of attack from Trojan horse code and mal-ware. The ISV’s concern stems from the
removal of security protections as a means to enable copying or as a preliminary step to
reverse-engineering. From the customer’s perspective this may be a preliminary step to
another attack on the system. The threat of tampering includes Java’s configuration files, the
security policy, and other relevant files, such as the keystore.

Other threats to the ISV’s customer include unaccountable actions. Unaccountable
actions are addressed by an audit facility. Although audit is typically a part of an application
that is security-aware, certain aspects of the Java security environment provide additional
incentives to integrate the audit capability with other Java security features. For this reason,
integration of an audit facility into the Java security components will be briefly covered in this
paper.

4.3 Summary of Security Objectives
The primary objective of the security architecture described in this paper is to improve

the level of trust in the operational integrity of a java application server. This trust must be
based upon automated mechanisms that guarantee the integrity of the components that make
up the system and the application. Trust is based upon the level of assurance that the Java
system and the application are free from malicious code, and that the integrity protection and
tamper-detection mechanisms are operating properly. The system should be designed in such
way as to safely stop operation as soon as a breech in integrity is detected. This objective is
achieved through the following informal requirements:

 Restrict actions that may be performed by any system component to a known set of
approved actions, defined by:

 application of security policy down to individual classes (fine-grained security
policy application);

 security policy defines all sensitive operations (security policy completeness); and
 automated enforcement of the security policy.

 Ensure the system and application class files are genuine, which means:
 strong integrity checks are applied to all classes that make up either the system or

the application (strong class file integrity);

 Deter malicious code insertion, which includes the following actions:
 restrict package membership to known classes;
 enforce known linkages and method-call-patterns between packages;
 perform minimal obfuscation on all application classes; and
 disclosure protections are applied to sensitive application classes.

 Deter tampering of supporting system and application files through:
 application of strong integrity checks to all system configuration files and

supporting files; and
 automatic consistency checks of system installation, including the contents of

sensitive directories.

 Deter illegal copying by:
 link the ability to use application class files to an unforgeable hardware token.

6 of 13

5 Architecture
The system is architected around the security objectives outlined in the previous

section. The architecture consists of extensions to the Java 2 security system, including the
policy manager, the class loader, and the security manager. Each of these elements
participates in meeting different aspects of the security objectives. A graphical depiction of
the architecture is shown below.

5.1 Concept of Operation
The security extensions create an inter-locked dependency on each other, with each

component satisfying parts of the security objectives. The system is designed such that if a
failure in the system integrity is detected by any component, that component shuts down the
system. This is shown by a series of dependencies among components in Figure 2. Since the
primary motivation in having the application is to actually run it, use of the application’s class
files is a necessary precondition. Since the class files are encrypted, access to the application
necessarily requires the use of the custom class loader.

The class loader will not operate without the self-installing extended security manager.
The extended security manager performs system integrity checks during startup and during
normal permission checks. These checks include integrity checks on the system environment,
including validating manifests of sensitive directories, validating the rt.jar, and checking that
the extended policy manager is operating.

Extended
Class

Loader

Application
Class Files

Custom
Permission

Files Extended
Security
Manager

Extended
Policy

Manager

Decrypts &
Loads

Java.
Policy

Java.
security

checks for correct
Policy Manager in...

Specifies to JVM
which policy class to run

Java
Crypto

Provider

checks

checks

checks

checks

uses

Restricts
operation

of

ENCRYPTION

SIGNATURE

SIGNATURE

Smartcard
with

PK Cert

Uses to check
signatures

Uses to get
Decryption key

And check
signatures

checks &
installs if
necessary

checks

JVM
System
Classes

checks

Keystore

Figure 1: Dependencies between Java 2 Security Extensions

The extended policy manager is loaded by the JVM during startup. It checks that the

7 of 13

system’s configuration files have not been modified by verifying a digital signature across each
file. The public key certificate used to verify the signatures is stored on the hardware token.
Since the extended policy manager is normally started during JVM boot, it also checks certain
elements of the configuration necessary for proper operation of the system. One key element
of this is the proper configuration of the Java Cryptography provider.

Before the class loader loads any classes, it loads the extended security manager, which
checks the system and validates that the extended policy manager is loaded. The extended
policy manager should be loaded as part of the JVM start-up process. When the extended policy
manager is loaded, it performs additional checks on the system.

If any of the integrity checks fails, each extended component notifies the other
components of the failure, and attempts to shut down operation of the system. The extended
policy manager denies access to all services by returning the null permission set in response to
any query. This effectively prevents any sensitive operation from being performed for newly
loaded classes. The extended security manager throws a security exception for every check
function. The extended class loader purges the class cache and the ProtectionDomain store and
refuses to load any classes by throwing a security exception.

If all the integrity checks successfully pass, the extended policy manager and the
extended class loader enforce a fine-grained security policy that assigns permissions down to
the class level. The policy file is set up to grant the minimal set of permissions to each class
file that is necessary for the class to perform its function. All application class files enforce a
permission check in their constructors to verify the calling class has permission to utilize the
specific package. This permission check has the effect of installing the security manager (if it is
not present), since the extended security manager is self-installing.

Trust can be assigned to the system because, whenever the system is operating, it must
be operating correctly. This trust is assigned based upon the cryptographic strength of the
encryption used to protect the class files, the assurance that the cryptographic keys remain
secret (key storage on the HW token), and the cryptographic strength in the digital signatures
across the configuration data. If these elements are trusted, then the system can be trusted
because:

 only the extended class loader can access the cryptographic keys and load the
encrypted classes;

 only approved classes have authority to perform any sensitive actions because the
extended policy manager is started at system boot time, and the extended security
manager is installed by the class loader;

 only approved classes can run in the system because the extended class loader loads all
non-JVM classes, and the extended policy manager and extended security manager
validate digitally signed manifests of all system directories, JAR files, and configuration
files; and

 the system cannot be copied to an unapproved system, since it requires a hardware
token to operate.

5.2 Security Policy
The extended policy manager and the extended class loader are responsible for

enforcing the security policy. The extended policy manager reads the java.security file and
java.policy file to interpret the security policy to be made active in the system. The
java.policy file is extended to allow the CodeBase to specify a directory, a JAR file, a class file,
or a class file in a JAR file. The class loader was required to be involved in this extension, since
the class loader provides the CodeBase of the class being loaded to the policy manager when
retrieving the permissions for the ProtectionDomain. The default behavior of the class loader is
to strip off the class name and provides only the directory or the JAR file name. The class

8 of 13

loader is extended to provide the full pathname, and if the file is a JAR, to provide the
package name along with the class name in the CodeBase. This extension satisfies the
requirement to apply a fine-grained security policy.

Completeness of the security policy is performed by inspection of the policy file itself.
Although the extended policy manager could have enforced a stricter policy by not allowing
grants that give “all permissions”, this was not done. However, since the policy file is now
applied down to the class file, it is easier to see the exact effect of the policy, and which
classes are utilizing which permissions. This makes odd or incorrect permission grants stand out
in the policy file. This review of the policy is primarily to defend against mail-ware.

The extended security manager performs the automated security policy checks. The
extended security manager is a self-loading singleton class [12]. Access to the extended
security manager is provided through a getInstance method. The extended class loader calls
this method when it is first instantiated, thus causing security checks to be performed before
any sensitive classes are loaded.

5.3 Genuine System and Application Classes
The extended class loader provides integrity checks on all application classes and the

extended security manager checks the integrity of all system directories and JAR files. The
application classes are protected in signed JAR files, and sensitive classes within those JAR files
are protected by a special class file format. The special class file format encrypts the class file
content. The extended class loader provides the ability to decrypt these class files using a key
stored on a hardware token; this is done during the loadClass method [9].

The test implementation shall use a smartcard for the hardware token, and a smartcard
reader with secured PIN entry on the reader itself. During system startup, when the class
loader is first started, after the system has validated the system integrity, the system operator
is prompted for the PIN. This PIN is entered directly on the smartcard reader, allowing the
class loader to open a secured session to the smartcard.

5.4 Malicious Code Protections
All three extended components participate in the protections against malicious code.

The extended class loader checks the integrity of all JAR files. The policy assigns special
permissions to all classes that restrict package access and the policy manager provides methods
to check package assignments based upon validated system properties. The presence of the
security manager ensures that the AccessController is used to check permissions.

The extended class loader is protected from CLASSPATH manipulation by divorcing the
search path used by the class loader from a user modifiable system parameter. The class loader
uses a digitally signed properties file to list the installation directories of the application. This
list can be verified as unaltered using the digital signature. In addition, the extended class
loader does not directly follow the recommended algorithm for class loading. Specifically, the
extended class loader searches it’s own cache, and then tries to load the class from its URL
search path before passing off the load request to the delegation parent. This has the effect of
preventing code insertion attacks on the application using the system class loader or the
Xbootclasspath (e.g., the jre/classes directory and the jre/lib/extensions directory).

The checks performed by the extended class loader provide protection for application
classes. The class loader checks the integrity of all JAR files using the standard signed JAR
methods. To ensure that the signatures are not completely removed from the JAR files, the
security policy must tie its permissions assigned to classes from signed JARs to the certificate
used to validate those JAR files. In addition, as discussed above, the extended class loader
provides disclosure protection for sensitive classes through the use of an encrypted class file
format.

Assignment of a class to a package is always validated by the extended class loader

9 of 13

before the class is loaded. This involves a check with the extended policy manager that the
class being loaded has a permission associating it with that package. This is different from the
normal permissions checks in Java 2, which check the entire call stack. This check merely
checks a single permission assigned to a class based upon the class’ CodeBase. This check
meets the requirement to restrict package membership.

The extended class loader uses the accessClassInPackage technique to enforce known
linkages between packages [6]. This requires some work to translate the known package
interactions into permission grants in the policy file. For each class that accesses a protected
application package, and the class is not a member of that protected package, the policy file
must grant that class access to the protected package. This involves a special method in the
extended security manager so that the entire call stack is not checked for that permission, only
the referring class. This special method in the extended security manager is only available to
the extended class loader.

As a final protection, as a deterrent to reverse-engineering attacks, all class files are
obfuscated. All private members and local variables are obfuscated; this may actually provide a
performance improvement, as many longer strings are shortened. More sensitive classes may be
obfuscated more radically, however, this can have impacts on the policy file and other classes
if the class names, package names, and/or public members of a class are modified.

5.5 Tampering Protections
The extended policy manager and extended security manager perform integrity checks

on all configuration files and system directories and JAR files during start-up and intermittently
throughout the operation of the system. The extended policy manager performs checks on the
java.security and java.policy files, as well as over the installation of the cryptography
providers, the keystore, and an initial check on the rt.jar and the Xbootclasspath. These checks
involve validating the actual files against a digital signature to ensure their contents have not
changed. The extended security manager performs additional checks on the rt.jar, and
validates a set of manifests for the system directories, including directory contents, file sizes,
and checksums on certain files. These manifests are digitally signed to protect them from
tampering. As an additional step, the extended security manager checks for the proper
configuration of the smartcard subsystem, including native libraries, to ensure that the
smartcard system is not altered.

5.6 Audit Facility
A specific premise of the security policy should be that all sensitive operations are

checked with a Java permission. This permission check occurs through the security manager,
which could provide additional services. In [2], the idea of adding audit to the functionality of
the security manager is introduced. This provides a convenient method to localize audit
collection in one place, yet tailor the audit messages for each event by providing a method in
the permissions object to format an audit record. This has the benefit of allowing a single
review of the security policy to check for completion of both policy and audit coverage.

6 Current Status and Future Work
The current project has completed the first development phase of the security

extensions discussed in section 5. The system includes an extended class loader and policy
manager that implement a fine-grained security policy down to class files and classes in JAR
files. The class loader implements a protected class file format that includes encryption of the
class file and association of certificates to specially protected classes. The extended policy
manager and security manager perform checks on the system integrity of configuration files
and other system components using digital signatures. A demonstration implementation of key
storage was built on a smartcard, but has not been integrated with the other components of
the system. Testing of the current system has focused on the security policy implementation

10 of 13

and demonstrated successful association of permissions based upon the fine-grained policy. The
integrity protections, while effective, have the drawback of being overly sensitive to
whitespace modifications on the configuration files.

Future work includes complete integration of the hardware token, full integrity checking
of the environment, and additional testing of the system. Integration of the hardware token
requires further analysis to design automated validation of a trusted path through the class
loader to the smartcard. Although most integrity checks were implemented, manifest files of
sensitive directories have not been integrated into the system. A change to the current
configuration file protections involves the use of XML security protections [13][14] to solve the
sensitivity to whitespace. Additionally, a mechanism for runtime cross-validation of the active
security components (i.e., the class loader, the policy manager, and the security manger)
needs to be designed into the system to allow the stronger validation that the security
components are actively running in the system. As a final task, penetration testing of the
completed system, based upon the vulnerabilities described in section 3, must be completed.
Although this project is formally complete, continuation of this work for integration into a
large-scale application server, and addition of the future work items discussed here, is
currently under consideration.

7 Appendix: Java 2 Security Background
[Editor’s Note: Due to space limitations, this section may not appear in
the published version of this paper.]

Java 2 security was designed to provide the basic security mechanisms required for a
client environment, a server environment, and an operating system [1 p18]. These mechanisms
include security policy definition, code source authenticity, and authorization controls.

7.1 Java Security Policy Definition
The Java security policy is defined by a policy manager class and represented within an

active JVM in combination with the class loader. Other objects are involved with the
representation of the security policy, including the CodeSource class, the ProtectionDomain
class, and the Permissions class hierarchy.

The Java security policy is defined in a text file as a series of grant statements. Each
grant statement assigns one or more permissions to Java classes based upon a CodeSource. The
CodeSource defines a code location and a set of certificates. The code location is a URL that
specifies a local or remote directory or JAR file. The certificates are represented in the policy
file by common names that identify the public keys used to sign the class files. The common
names are used to retrieve the actual certificates from the local keystore [1 p119]. A local
administrator defines the Java security policy in two files: the java.security file and the
java.policy file [4]. Together, these files define the objects and permission sets that comprise
the JVM’s security policy.

The Java policy manager class, along with the class loader, is responsible for providing
the runtime representation of the security policy. The policy manager class reads the security
policy from the configuration files and assigns sets of permissions to unique CodeSources. The
class loader is responsible for binding a set of permissions to each loaded class [1 p70]. The
class loader creates a CodeSource for each class it loads using the location from where the
class was loaded, and the set of certificates that were used to sign the class. The class loader
uses this CodeSource to retrieve the set of permissions from the policy manager, and then
creates a ProtectionDomain from this set of permissions and the CodeSource. This
ProtectionDomain is cached by the class loader, which associates those same permissions with
every class from the same CodeSource. The AccessController uses the permissions in the
ProtectionDomain when verifying whether a particular class has a particular permission.

11 of 13

7.2 CodeSource Authenticity
Code source authenticity is provided through the use of JAR files and special

permissions. This functionality is implemented in the class loader as sealed JAR files, signed
JAR files, and protected packages.

Java 2 provides a special mechanism, called “sealing”, within JAR files to ensure that
only one JAR file supplies classes for a specific package. JAR files are “sealed” by adding a text
attribute to the manifest file. This attribute can be applied to all packages in the JAR file, or
only to specific packages. When a package is “sealed”, all classes that claim membership to
that package must come from a single JAR file [5].

The class loader enforces special restrictions on classes and packages when these come
from signed JAR files. If a class comes from a JAR file that is signed, and the digital signature
across the class file is verified, then the class file is given a new security attribute in its
CodeBase. This security attribute is the certificate of the signer of the JAR file. Since the
certificate is added to the CodeSource, and the CodeSource is used to assign permissions to
classes through the ProtectionDomain, the presence of a certificate can be used to assign
special permissions to a class or set of classes. Additionally, when the first class for a particular
package is loaded, the class loader associates any certificates assigned to that class to that
package as well. Then, when additional classes for that package are loaded, they must also
have the same certificates associated with them. This enforces equal integrity protections
across all classes within a package, and prevents some types of malicious code insertion
attacks.

The class loader provides special protection to packages defined in the java.security file
under the defineClassInPackage and accessClassInPackage properties. These properties are a
list of package names, each of which require a special permission in order for the package to
be used. For all packages listed in the accessClassInPackage property, class loaders must have a
special permission to access classes in that package. In the default installation of the
java.security file, the “sun” package is listed in the property list for accessClassInPackage. This
prevents classes loaded by the system class loader from using classes considered private by Sun
and residing in a package beginning with the name “sun.” The defineClassInPackage property is
intended to work in a similar fashion for the permission to define classes, however the standard
class loaders do not implement checks for this property. This mechanism of package protection
was deemed insufficient to protect the “java.*” packages, presumably because Sun
Microsystems wanted to ensure a the base packages of Java could not be supplanted by merely
changing a text-based configuration file. Additions to the “java.*” packages are protected
using explicit code within the base class loader [6].

7.3 Authorization Controls
The security manager and AccessController enforce the authorization controls during runtime
using permission checks. A permission check uses the CodeSource of the class being checked to
reference the set of permissions in the ProtectionDomain, and verifies that the class holds a
permission for the action being performed. The permission set in the ProtectionDomain was
created from the security policy in force at the time the first class matching that CodeSource
was loaded. These authorization checks are performed only if a security manager is currently
active in the JVM. This condition is a result of a backwards-compatibility requirement that new
versions of the JVM preserve the behavior exhibited by legacy code when the security manager
is null. It is for this reason that the JVM does not directly call the AccessController to perform
permissions checks, but instead calls the active security manager, or performs no checks if the
security manager is null [1 p110].

12 of 13

8 References
[1] L. Gong. Inside Java 2 Platform Security: Architecture, API Design, and Implementation.

Addison-Wesley, 1999.
[2] L. Gong. “Java 2 Platform Security Architecture”. Oct 1998. Copyright 1997-1999, Sun

Microssystems. http://java.sun.com/j2se/1.3/docs/guide/security/spec/security-
specTOC.fm.html

[3] M. Pistoia et. al. Java 2 Network Security, 2nd Edition. IBM, 1999.
[4] G. McCluskey. “Adding Security Features to Applications”. JDC Tech Tips, July 14, 1999.

Copyright 1995-2000, Sun Microsystems.
http://developer.java.sun.com/developer/JDCTechTips/.

[5] Sun Microsystems. “Controlling Package Access with Sealed JAR Files”. JDC Tech Tips, Jan
30, 2001. Copyright 2001, Sun Microsystems. .
http://developer.java.sun.com/developer/JDCTechTips/.

[6] Sun Microsystems. “Controlling Package Access with Security Permissions”. JDC Tech Tips,
Jan 30, 2001. Copyright 2001, Sun Microsystems. .
http://developer.java.sun.com/developer/JDCTechTips/.

[7] Sun Microsystems, The Java Virtual Machine Specification.
http://java.sun.com/docs/books/vmspec.

[8] Sun Microsystems. “Relating Class Loaders to the CLASSPATH”. JDC Tech Tips, Oct 31,
2000. Copyright 2000, Sun Microsystems.
http://developer.java.sun.com/developer/JDCTechTips/.

[9] MageLang Institute. “Fundamentals of Java Security”. Copyright, 1998 MageLang Institute.
http://developer.java.sun.com/developer/onlineTraining/Security/

[10] R. Srinivas. “Java Security Evolution and Concepts, Part2”. Java World, July 2000.
Copyright, 2000 Itworld.com Inc. http://www.javaworld.com/javaworld/jw-07-2000/jw-
0728-security_p.html

[11] Sun Microsystems. “Java Security”. http://java.sun.com/docs/white/index.html
[12] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[13] W3C, XML Signature Syntax and Processing, Draft Candidate 2.

http://www.w3.org/TR/xmldsig-core/
[14] W3C, XML Encryption Syntax and Processing, Work-in-Progress.

http://www.w3.org/Encryption/2001/

13 of 13

http://java.sun.com/j2se/1.3/docs/guide/security/spec/security-specTOC.fm.html
http://java.sun.com/j2se/1.3/docs/guide/security/spec/security-specTOC.fm.html
http://developer.java.sun.com/
http://developer.java.sun.com/
http://developer.java.sun.com/
http://developer.java.sun.com/
http://developer.java.sun.com/
http://developer.java.sun.com/
http://java.sun.com/docs/books/vmspec
http://developer.java.sun.com/
http://developer.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Security/
http://www.javaworld.com/javaworld/jw-07-2000/jw-0728-security_p.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0728-security_p.html
http://java.sun.com/docs/white/index.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/Encryption/2001/

	Introduction
	Motivation
	Java Security Vulnerabilities
	Security Requirements
	Assumptions
	Threats
	Summary of Security Objectives

	Architecture
	Concept of Operation
	Security Policy
	Genuine System and Application Classes
	Malicious Code Protections
	Tampering Protections
	Audit Facility

	Current Status and Future Work
	Appendix: Java 2 Security Background
	Java Security Policy Definition
	CodeSource Authenticity
	Authorization Controls

	References

